
RESTORING ANCIENT GREEK VASES WITH COMPUTER VISION

Desi DeVaul (dpd2136) and Nicky Khorasani (nck2130)

Columbia University

ABSTRACT
In this paper we contribute several new fine-tuned models and
performance comparisons for the task of image restoration
of ancient Greek vases. Ancient Greek vases are often dec-
orated. After having survived for thousands of years, they
sometimes accrue some damage, particularly to the decorated
parts: either the paint has faded away in certain areas or oth-
erwise parts of the actual vases have been been destroyed,
removing that decoration. The study of these vases is impor-
tant to the study of classics and by extension the study of the
formation of Western civilization. To this end, models that
generate possible restorations for these vases would be a use-
ful contribution to classicists and archaeologists working on
pottery and could be extended from ancient Greek pottery to
other types of ancient artifacts. We first contribute several
models that can restore suggest repairs for damaged decora-
tion, and we do a comparison between them. We then try
to extend this work to restoring the scenes, which are more
complex, varied, and require more computation.

1. INTRODUCTION

Classics is the study of ancient civilizations, traditionally with
a focus on the cultures and languages of the near Mediter-
ranean, nominally ancient Greece and Rome. The study of
classics is important because of the lasting impact of these
ancient cultures on our world [1] [2] and the way these cul-
tures have shaped our forebears. [3]. Part of classical studies
relies upon the study of ancient pottery, with serious studies of
Greek painted ceramics beginning in earnest during the 18th
century.” [4].

Many ancient Greek vases have both decorations (i.e.
wreathes and palmettes which adorn the vase) and depictions
of scenes. These scenes could be occurrences of daily life or
festivals, or they could depict the gods. The study of these
vases is instrumental in understanding many aspects of an-
cient Greek culture, from religious practices [5] to gender
roles[6].

Although many examples of Greek pottery have survived
since antiquity, many of them are reconstructions or have suf-
fered some, if not significant, damage to their decoration and
to the scenes which they depict. Manually restoring these
paintings has been helpful to the field of classical archaeol-
ogy, but it is a laborious and time-consuming process. There-

fore, an efficient way to either suggest a restoration for ei-
ther the damaged decoration, or the damaged scene, or both,
would benefit the field. We have fine-tuned several models
such that, given an image of a vase with a damaged area
’masked out’, it will generate a new image with this mask
filled in, thus ’restoring’ the image.

2. BACKGROUND

Other groups have tried applying machine learning to solve
similar problems: identifying pottery fragments [7], restor-
ing ancient inscriptions [8] and restoring the pottery shapes
[9]. However, no one has yet attempted to use machine learn-
ing or computer vision techniques to restore the actual images
depicted on these vases. Our paper contributes several fine-
tuned computer vision models specifically for this purpose.

A lot of work has been done in the field of computer vi-
sion toward creating models for image generation [10] [11]
[12] [13]. Recently, diffusion models have begun to gain
prominence as the predominant model for image generation
[14]. Diffusion models are trained in a self-supervised man-
ner, where noise is randomly added to an image to obfuscate
it, and then the model learns to ’undo’ this noise and return
to the original image. For this reason, diffusion models might
also be referred to as a ”denoising” model. Stable diffusion
is a particular style of diffusion model. It works based on
the premise that images can be compressed to a smaller ”la-
tent space” – by virtue of the ”Variational Auto Encoder” –
at which point noise can be added that the model learns to
be removed [15]. This is a more efficient process since its
happening in a smaller latent space rather than the full im-
age space. This is the type of model which we worked on.
Of the many different tasks for such generative models, one
stands out as particularly relevant to the task of partial image
reconstruction: generative inpainting. Generative inpainting
works in a self-supervised way: given some training images,
randomly mask (i.e. replace the masked pixel values with all
white values) a subsection of the image, and use some gener-
ative procedure to ”fill-in” what has been masked [11]. Nat-
urally, people have worked to combine diffusion models and
the inpainting task by taking a pretrained diffusion model and
further finetuning it on the inpainting task [13]. Multiple dif-
ferent methods exist for updating the weights of a model for
better performance on a specific task. There is, of course,



finetuning, by which we explicitly mean the updating of all
weights within the model using standard back propagation.
This is precisely what we have learned in class.

Given the incredible size of some modern machine learn-
ing models, researchers have also created efficient ways of
”finetuning” these models by adding an ”adapter” to these
models, a new tool which contains a much smaller amount
of weights compared to the entire model, and then updating
the weights only for this adapted. Thus, one can tailor the
larger model to this specific task by only having to update
the weights of the adapter. This process is called Low-Rank
Adaptation (LoRA), and was orignally created for use with
large language models [16]. However, researchers have also
adapted LoRA to work with vision models [17]. Importantly,
LoRA does not update the weights of the base model, it only
learns the adapter weights, hence its efficiency.

Finally, work has been done on how to adapt vision mod-
els, specifically text to image models, for a specific individual
object, which one might want the model to learn. This train-
ing process is called ”Dreambooth” and it works to help a
model very quickly learn how to incorporate a specific ob-
ject [18]. Dreambooth takes only a handful of images (5-12
or so) for the model to learn this new object. It does this
by associating this object with a particular input token, such
that it can very quickly learn the association between the two.
Dreambooth works under the assumption that these models
already have a wealth of knowledge, and so adding an addi-
tional object to its ”memory” should require relatively mini-
mal effort if it properly utilizes what the model has learned al-
ready. However, one of the keys to diffusion is that the model
has already learned the specific class associated with the par-
ticular object that it is learning. For instance, if you want it to
learn object ”X” as an instance of a particular class, say ”Y”,
then the should a priori know the class ”Y”. For instance if it
knows what a class ”Cat” is, it can quickly learn a particular
cat, e.g. ”Fluffy.”

3. METHODS

3.1. Dataset

We compiled multiple datasets using images that we down-
loaded from the BPAD. The BPAD is a large online repository
of images of ancient Greek vases.

Our first dataset is a collection of vases who are entirely
patterned. We began by selecting images whose ”decoration”
tag was ”BLACK PATTERN.” By limiting these images to
the same style and color, we hoped to improve our chances
at success. We further honed in the specificity of the task
by only selecting specific types of vases. We selected these
bases because they were a. similar, and b. had clean images,
generally. The vase types we selected were: ”LEKYTHOS,
SQUAT”, ”ALABASTRON”, ”LEKYTHOS”, ”AMPHORA,
NECK” and ”ARYBALLOS.”

This data set was on the smaller size (about 106 images
after we removed by hand the bad ones), but because we our
masking our images several times, each image can be used
multiple times in training. We additionally cropped each im-
age three different ways, so the effective size of our dataset
was at least one order of magnitude larger, all things consid-
ered.

In order to try and expand our project, we also collected
some scenes which we wished to try and train our models
with. These scenes often contain people, animals, or gods in-
teracting. We decided to collect all the images of the same
style (”BLACK FIGURE”) and of the same vase type: ”AM-
PHORA, NECK”. When we scraped all of these images, we
had about 6,700 total images. Examples of such images can
be seen in the appendix. Notably, we had less time to clean
these images so this dataset overall was of a lower quality than
the first dataset.

3.2. Models

For our models we used the Stability AI Stable Diffusion 2
Inpainting Model [13] as our base model, from which we fur-
ther trained our own models. The Stable Diffusion 2 Inpaint-
ing Model is a text to image model, that takes in a textual
prompt and generates an image conditioned on this input. As
it says in the model card: this ”model is resumed from stable-
diffusion-2-base (512-base-ema.ckpt) and trained for another
200k steps.”

3.3. Training Methods

3.3.1. Finetuning Stable Diffusion

We tried two approaches to fine-tuning. First, we tried ”raw
fine-tuning” of Stable-Diffusion-2 (which we describe be-
low). When this did not work as well as expected, we decided
to leverage a popular GitHub repository with tools available
to help us fine-tune Stable-Diffusion-2 for in-painting.

Raw Finetuning Stable-Diffusion
Raw finetuning Stable-Diffusion-2 involved downloading

the stable-diffusion inpainting pipelinefrom the huggingface
diffusers library and creating a training loop to update the in-
ternal weights of the network.

Unfortunately, the stable-diffusion-inpainting pipeline
does not support fine-tuning out of the box. To circumvent
this, we attempted to apply network surgery to the diffusion
model as taught in class.

The two primary blocks of an in-painting model are the
Variational Auto Encoder (VAE), which creates a represen-
tation of the image in a lower dimensional ”latent space”,
and the U-Net which is a Convolutional Neural Network
(CNN) that takes as input the latents generated by the VAE
and performs the diffusion process on them [MAYBE CITA-
TION?]. For our network surgery, we decided to freeze the

https://huggingface.co/stabilityai/stable-diffusion-2-inpainting


Fig. 1. The original image (left), masked image (center) and
generated image (right) with our ”Raw Finetuned” model.

VAE weights and update the UNet weights because they are
responsible for the diffusion process.

Our approach was to freeze the VAE weights and fine-tune
only the UNet. This involved manually passing our masked
images through the VAE and then passing these latents to the
UNET. Once this was done, we decoded the UNET outputs
before calculating mean squared error (MSE) loss between
the generated image and the unmasked ground truth image
and then used this loss to do back-propagation on the UNet.

Unfortunately, this proved to be an incredibly difficult
task. The primary difficulty of this process was the latent ten-
sors outputted by the VAE not matching the shape required
UNet input shape. As a result, we tried to input dummy
channels to the UNet. Adding dummy channels enabled us
to run the training loop successfully, and our loss even de-
creased. However, when running inference, we were shocked
to find that our output was all noise (See 1! We made many
adjustments in an attempt to fix our training pipeline, but un-
fortunately, none succeeded. Therefore, we decided that this
method of ”raw fine-tuning” stable diffusion was outside this
project’s scope and pivoted towards using some established
infrastructure for training in painting stable diffusion.

Using a Fork of Stable-Diffusion
We decided to pivot to forking this GitHub repository of
Stable-Diffusion. We first needed to create masks for our
dataset to finetune using this fork of stable diffusion using
our pattern dataset. Then, we wrote a YAML config file
describing the fine-tuning parameters. Finally, we ran the
main.py Python script using an A100 GPU on Google Co-
lab. To mask our dataset, we evaluated a few options. For
our ”raw finetuning” experiment, we created masks out of
a sequence of random squares. The center image of Fig-
ure 1 shows what this mask looks like. The second option
was to use a script in the stable-diffusion repository called
’gen mask dataset.py’ script. In the end, we opted to use the
’gen mask dataset.py’ because it generates random masks of
different shapes more robustly than our mask creation code.
Additioanlly, it also creates three ”crops” for each image (and
a mask for each crop), expanding our pattern dataset by a
factor of three. This gave us 300 training samples and 50
validation samples for finetuning with our pattern dataset.
For our first finetuning using this method we used this config

Fig. 2. Training and Validation Loss Per epoch in our first
finetuning config

file. The key parameters for this finetuning were a ”batch size
= 4”, ”learning rate = 1 ∗ e−6 ”, and ”max epochs = 50”.
Finetuning with this config led to our training loss and valida-
tion loss being very unstable, as shown in 2. Because of the
instability of the train and validation loss in this run, we de-
cided to finetune our model again with an ”improved” config
in order to increase the stability of the loss per epoch. This
resulted in us finetuning with this config file. In this config
file, we increased the batch size to 8, added gradient accumu-
lation, decreased the learning rate, and added 10% dropout.
We added each of these because they were discussed in class
as effective ways to increase the stability of the loss.

Fig. 3. Training and Validation Loss Per epoch with our ”im-
proved” config.

Unfortunately, as you can see in figure 4, the instabil-

https://github.com/CreamyLong/stable-diffusion
https://github.com/Nicky-2000/stable-diffusion/blob/master/configs/latent-diffusion/inpainting/greek_pottery_inpainting.yaml
https://github.com/Nicky-2000/stable-diffusion/blob/master/configs/latent-diffusion/inpainting/greek_pottery_inpainting.yaml
https://github.com/Nicky-2000/stable-diffusion/blob/master/configs/latent-diffusion/inpainting/greek_pottery_inpainting.yaml


Fig. 4. Training and Validation Loss Per epoch with our ”im-
proved” finetune config

ity of our loss did not decrease with our ”improved” config.
Additionally, from 4, the validation loss became more un-
stable. This is probably due to using a small validation set
for this finetuning. Despite the issue of unstable training and
validation loss, we were pleased with the quantitative and
qualitative results (which are discussed in the results section).
We did try to overcome the issue of using a small validation
set by using our large ”scene vase” data set with this fine-
tuning method. However, we quickly learned that finetuning
stable-diffusion-2 with 1000+ images on a single A100 took
on the order of days which would require resources (time and
money) not available to use for this project.

3.3.2. LoRA

LoRA works by creating a low rank approximation of the
normal weights matrix by decomposing this original weight
matrix into two smaller matrices. These matrices form what
is called an ”adapter” because they work with the normal
weights to create an augmented output. Thus, when one per-
forms a LoRA training, one needs to only update these low
rank approximation matrices and this should help the combi-
nation of the base model plus this adapter to perform better at
the task.

For the pattern dataset, we trained 5 different LoRA
adapters. They were of rank 4, 16, 32, 64 and 128, respec-
tively. We ran each for 1000 training steps, a training batch of
1, accumulating the gradient for only 1 step, using a weight
decay of 0.001 and a dropout rate of 0.01. We saved the
models every 100 steps. We did not write this training code,
we used the LoRA library.

What we did do, was take the masking code and modify
it. Because the images that we had were of different sizes

and shapes, I modified the automatic masking code. I cre-
ated two different masking functions and copied the training
code twice. On the ”normal” masking function, I modified
the coordinates at which the masks would be generated. I
constrained where these would happen to the middle 50% of
the image, because that is where the pattern or scene would
be.

We then duplicated the training code to work with a differ-
ent masking function. This masking function similarly cen-
ters the mask at somewhere within the middle region of the
image, but it generates a singular large mask, that ranges in
size between 64 and 128 pixels in size.

In total, we did 10 trainings of Lora: 5 different LoRA
ranks and 2 different styles of masks. Each of these rank for
1000 steps. After every 100 steps, I saved the checkpoint
and ran both the base model (which I did not finetune) and
the finetuned LoRA model on the validation dataset to calcu-
late the mean squared error against the base image. Note that
each time the validation set was evaluated, masks were ran-
domly generated and both the base model and the currently in
progress LoRA model were evaluated on this dataset.

Because LoRA with rank 32 after 600 steps performed
the best on the pattern dataset, we trained another version of
this model on the scene dataset, in order to see if this proce-
dure would expand to a more complicated dataset. We used
the same hyperparameters and method of calulcating the val-
idation loss which is described above.

3.3.3. Dreambooth

Dreambooth is designed to create a ”personalized” Stable
diffusion model. In essence, it is supposed to allow one to
quickly adapt a stable diffusion model to learn about a par-
ticular object. One does this by taking an object and giving
it a solid color background (see 5). Then, one passes in a
prompt that designates this word with a specific word pref-
aced by the ”sks” token. In essence, ”sks” alerts the model’s
text encoder to pay attention to the fact that that the word
following it is going to be associated with the input class.
An application of this fine-tuning process would be to get a
model to understand a specific figure or symbol or object that
is common to Greek vase paintings. Then, if one saw one
of these objects that was partially damaged or missing, they
would be able to fill it in using this trained model. For in-
stance, imagine they have a vase with a painting of Herakles,
but his head is chipped. They could mask out the existing,
damaged head, and then use a model which had learned what
”sks Herakles’ head” is to fill in the mask, thus ”restoring”
it. For the purposes of this final project we began by trying
to get Dreambooth to understand Herakles’ face. For the pur-
poses of testing, we took 5 images of Herakles and colored
out everything except for his face. We then ran Dreambooth
training with the prompt ”ancient greek vase of herakles sks
face” as the prompt. We used quantized vectors of 16 bits



of precision, a training batch size of 1, and a learning rate of
5e-6. I then trained for 500 training steps, accumulating 2
gradient steps at a time. We did not write this training code, it
comes from the Dreambooth library. We additionally trained

(a) Example data point for Dreambooth training

Fig. 5. This is an example of training image used for the
Dreambooth finetuning model. Everything has been made
monochromatic except for Herakles’ face. The corresponding
prompt was ”ancient greek vase of herakles sks face”, where
’sks’ is a keyword for Dreambooth to alert it that it should pay
attention and learn the following word (’face’, in this case).

another Dreambooth model on images of legs from various
vase paintings. Legs are a very simple shape that is also very
consistent across paintings, therefore we thought it would be
easy for the model to succeed at this task. We took 4 photos
and colored in all of the background except for a singular leg,
meaning we got multiple training images from one singular
vase painting if the individuals shown had two images that
were visible. We ended up with 11 images for training data of
different legs. We used the same hyper parameters mentioned
above.

4. RESULTS

4.1. Finetuning Stable Diffusion

Figures 6, 7, and 8 qualitatively show examples of the results
for finetuning stable diffusion. As we can see, the original
and finetuned models performed very similarly.

To qunatitatively evaluate the finetuned network we used
the Structural Similarity Index (SSIM) (10) and Peak Signal
To Noise Ratio (PSNR) (9 metrics to quantitatively evaluate
the fine-tuning of stable diffusion. These are both standard
metrics used to evaluate image generation models.

The PSNR of both our finetuned models outperforme out
performed our base model on this test set. Additionally, we
saw a slight boost in SSIM with our fine-tuned models. This
is promising

Fig. 6. Test Image 0 Repair for the base, first finetuned, and
”improved” model

Fig. 7. Test Image 2 Repair for the base, first finetuned, and
”improved” model

Fig. 8. Test Image 3 Repair for the base, first finetuned and,
”improved” model

4.2. LoRA

In order to see how the LoRA models performed, we graphed
their results against the validation dataset for every check
point (see 11 and 12). We made two graphs, one for each type
of masking that was performed. As can be seen in 11, most of
the trainings were grouped together, though generally the best
results were between 400 and 700 training steps. The best
model overall was the model with a LoRA rank of 32 after it
had run for 32 steps. This has an MSE of about 173. This was
the lowest for any single model which I tested. The lowest
base model had an MSE of 178 on this same validation set.
Thus, this LoRA model beat the base model performance
by about 2.8% in terms of loss (not shown).

As for the LoRA models which we ran with the bigger
masks, this actually made the models worse 12. None of them
outperformed the base model, which had an MSE of 173 on
one of the validation sets (not shown).

We have also shown in 13 an example of a repair done
by the LoRA model. The LoRA model’s suggestion is sec-
ond to the left and the original image is on the right. The



Fig. 9. PSNR of the base model, our first finetuned model,
and our ”improved” finetuned model on each of the 5 key test
set samples

Fig. 10. SSIM of the base model, our first finetuned model,
and our ”improved” finetuned model on each of the 5 key test
set samples

base model (not trained by us) model’s suggestion is the far-
thest left. The mask is the second to the right. Clearly, in
this example, LoRA appears to do the best job of creating a
restoration.

We then also trained the best performing LoRA model
on the scene dataset. We similarly ran this for 1000 training
steps. As can be seen in the corresponding figure, we found
that after around 400 steps, this LoRA model began to out-
perform the base model on the same datasets. We think that
this shows this approach could be promising for future work
specifically on restoring the scenes on ancient Greek vases.

4.2.1. Dreambooth

As for Dreambooth, we had mixed results. Because each val-
idation required hand drawing over them to create the masks,
we only made a couple of validation images for each itera-

Fig. 11. Here we have the different validation loss values for
each version of LoRA which we ran with the vanilla masking
function. The number of training steps (in hundreds) is on the
x-axis, and the MSE loss is on the y-axis. The lowest value
for the base model is 178 (not shown.) The lowest loss for the
LoRA models is 173 (shown in green.)

tion of Dreambooth. Because of this extremely small sample
size, this section has to be conducted qualitatively. In short,
Dreambooth did not seem to work very well. Case in point,
the images pasted below. As you can see from 14, Herakles’
leg does not get restored! Dreambooth training does not re-
ally seem let the model understand the features which were
supposed to be included. We similarly trained Dreambooth to
recognize ”Herakles’ face” but that performed equally poorly.
Sometimes, it did in fact return somethingin the shape of a
head, but it did not have the features of a head (namely eyes,
nose, mouth, etc.).

5. DISCUSSION

5.1. Finetuning

Despite the disappointing qualitative results of finetuning, the
fact that the finetuned models had a better SSIM and PSNR
is promising. This implies that with a larger training and val-
idation set we could potentially finetune a model that is sig-
nificantly better than the base model at our pottery restoration
tasks. Unfortunately, we could not test this hypothesis with
our larger scene vase dataset due to computational resource
constraints.

5.2. LoRA

Overall, it seems like the best performing model outper-
formed the base model on the pattern dataset. Given the
small increase in accuracy (approx. 3%), more testing is
needed to really guarantee this result.

Additionally, the best models tended to reach optimal re-
sults in under 800 training steps, before they began to overfit.



Fig. 12. Here we have the different validation loss values
for each version of LoRA which we ran with the big, single
masking function. The number of training steps (in hundreds)
is on the x-axis, and the MSE loss is on the y-axis. The lowest
value for the base model is 173 (not shown.) The lowest loss
for the LoRA models is about 175 (shown in orange).

This is extremely efficient finetuning.
Finally, though we only trained one model on the scene

dataset, it did outperform the baseline model. With more
time, this would be an interesting extension of this project.

5.2.1. Dreambooth

Dreambooth had very disappointing results. It was very in-
consistent and seemed to not quite be able to grasp the im-
portant key features of the objects it was tasked with learn-
ing. This perhaps makes sense in retrospect. Dreambooth is
supposed to work by leveraging what the model has learned
throughout its training already. Thus, the chances that it can
already implicitly segment and understand ”Herakles’ face”
or ” a leg” is very low. It seems like the model was not able to
learn any relationship between these images. I think perhaps
this could be improved if more training images were gathered
that were nearly identical (there was some variability in our
training data), but that would likely lead to over-fitting. Over-
all, Dreambooth seems like an incorrect tool for this job.

6. CONCLUSION

In conclusion, we performed three different styles of training
to the Stable Diffusion 2 Inpainting model to get it to work
better on inpainting damaged images of ancient Greek vases.
We trained these models for inpainting on both patterns and
on scenes. Because we got positive results for creating better
inpainting on our pattern data, and because our scene results
(though scant) were also slightly positive, we think that there
is room for further extension of this project to more robustly
attempt this inpainting task on a wider variety of vases.

Fig. 13. Here we have the process of repairing an image.
From left to right we have the image generated by the base
model, the image generated by the LoRA rank 32 model after
100 steps, the mask applied to the original image, and then
finally the original image. Note how the base model adds
in some glare that shouldn’t be there. The LoRA model’s
generated image looks fairly decent.

Fig. 14. Here is a result from the Dreambooth training. In the
top left is the original image, in the bottom left is the mask
applied to this image (the white park is what the model should
fill in), and on the right is what the trained model provides.
Clearly, this model can sometimes mess up quite badly.

6.1. Suggestions for Improvement

We think that one of the limitations of our approach for LoRA
was using different validation sets because of the automatic
masking each time. To make results easier to compare, a sin-
gle validation dataset should have been created a priori and
used every time. We also think that if we were to attempt this
again, we would spend more time on the scene data trying
to clean it. We noticed many damaged images that were less
than ideal for training a model meant to undo this damage.

7. CONTRIBUTIONS

Desi: I finetuned the LoRA and Dreambooth models. I also
found the data and wrote the basics of the code for scraping
this data, but it was single threaded only. As for the report,
I wrote the majority of the introduction and background sec-
tions. I wrote the methods section (where it applied to LoRA
and Dreambooth) and the conclusions sections (where it ap-
plied to LoRA and Dreambooth), and I wrote my own results



/ discussion sections for LoRA/Dreambooth. I also wrote the
suggestions for improvement section and the abstract. I edited
together the video.
Nicky: I finetuned the stable diffusion model using the ”raw
method” and the stable-diffusion fork. I was responsible for
scraping the data from the database and organizing and label-
ing it for all our models. I also designed and implemented
an image masking scheme. I contributed to the introduction,
background, and finetuning sections of the methods, results,
and discussion.

8. REFERENCES

[1] Brian McGing, “Why bother with the classics in the
twenty-first century?,” Classics Ireland, vol. 26, pp.
142–157, 2019.

[2] Gilbert Highet, The classical tradition: Greek and Ro-
man influences on Western literature, Oxford University
Press, 2015.

[3] Paul MacKendrick, “”this rich source of delight”: The
classics and the founding fathers,” The Classical Jour-
nal, vol. 72, no. 2, pp. 97–106, 1976.

[4] John H. Oakley, “Greek vase painting,” American Jour-
nal of Archaeology, vol. 113, no. 4, pp. 599–627, 2009.

[5] Stefanos Gimatzidis, “Feasting and offering to the
gods in early greek sanctuaries: Monumentalisation and
miniaturisation in pottery,” Pallas, , no. 86, pp. 75–96,
2011.

[6] Sue Blundell and Nancy Sorkin Rabinowitz, “Women’s
bonds, women’s pots: Adornment scenes in attic vase-
painting,” Phoenix, vol. 62, no. 1/2, pp. 115–144, 2008.

[7] “An open system for collection and automatic recog-
nition of pottery through neural network algorithms,”
Heritage, vol. 4, no. 1, pp. 140, 2021, Copy-
right - © 2021 by the authors. Licensee MDPI,
Basel, Switzerland. This article is an open access ar-
ticle distributed under the terms and conditions of
the Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). Notwith-
standing the ProQuest Terms and Conditions, you may
use this content in accordance with the terms of the Li-
cense; Last updated - 2023-11-24.

[8] Yannis Assael, Thea Sommerschield, Brendan Shilling-
ford, Mahyar Bordbar, John Pavlopoulos, Marita
Chatzipanagiotou, Ion Androutsopoulos, Jonathan Prag,
and Nando de Freitas, “Restoring and attributing ancient
texts using deep neural networks,” Nature, vol. 603, no.
7900, pp. 280–283, Mar 2022.

[9] Pablo Navarro, Celia Cintas, Manuel Lucena,
José Manuel Fuertes, Rafael Segura, Claudio Del-
rieux, and Rolando González-José, “Reconstruction of
iberian ceramic potteries using generative adversarial
networks,” Scientific Reports, vol. 12, no. 1, pp. 10644,
Jun 2022.

[10] Karol Gregor, Ivo Danihelka, Alex Graves, Danilo
Rezende, and Daan Wierstra, “Draw: A recurrent neural
network for image generation,” in Proceedings of the
32nd International Conference on Machine Learning,
Francis Bach and David Blei, Eds., Lille, France, 07–09



Jul 2015, vol. 37 of Proceedings of Machine Learning
Research, pp. 1462–1471, PMLR.

[11] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu,
and Thomas S Huang, “Generative image inpainting
with contextual attention,” in Proceedings of the IEEE
conference on computer vision and pattern recognition,
2018, pp. 5505–5514.

[12] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt,
koray kavukcuoglu, Oriol Vinyals, and Alex Graves,
“Conditional image generation with pixelcnn decoders,”
in Advances in Neural Information Processing Systems,
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, Eds. 2016, vol. 29, Curran Associates, Inc.

[13] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer, “High-resolution im-
age synthesis with latent diffusion models,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), June 2022, pp.
10684–10695.

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel, “Denoising
diffusion probabilistic models,” 2020.

[15] Onkar Mishra, “Stable diffusion explained,”
https://medium.com/@onkarmishra/
stable-diffusion-explained-1f101284484d,
2024, Accessed: 2024-12-09.

[16] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen, “Lora: Low-rank adaptation of large lan-
guage models,” 2021.

[17] Cloneofsimo, “Lora,” https://github.com/
cloneofsimo/lora, n.d., Accessed: 2024-12-09.

[18] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael
Pritch, Michael Rubinstein, and Kfir Aberman, “Dream-
booth: Fine tuning text-to-image diffusion models for
subject-driven generation,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), June 2023, pp. 22500–22510.

https://medium.com/@onkarmishra/stable-diffusion-explained-1f101284484d
https://medium.com/@onkarmishra/stable-diffusion-explained-1f101284484d
https://github.com/cloneofsimo/lora
https://github.com/cloneofsimo/lora

	 Introduction
	 Background
	 Methods
	 Dataset
	 Models
	 Training Methods
	 Finetuning Stable Diffusion
	 LoRA
	 Dreambooth


	 Results
	 Finetuning Stable Diffusion
	 LoRA
	 Dreambooth


	 Discussion
	 Finetuning
	 LoRA
	 Dreambooth


	 Conclusion
	 Suggestions for Improvement

	 Contributions
	 References

