
Agentic Table Search for KitanaQueries
Mateo Juliani

msj2164@columbia.edu
Columbia University

Nicky Collins Khorasani
nck2130@columbia.edu
Columbia University

Kaushal Damania
kd2990@columbia.edu
Columbia University

ACM Reference Format:
Mateo Juliani, Nicky Collins Khorasani, and Kaushal Damania. 2025. Agentic
Table Search for Kitana Queries. In Proceedings of ACM Conference (Con-
ference’17). ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 ABSTRACT / INTRODUCTION
Given a base table and a target column, Kitana - a data-centric Au-
toML system - searches through a database to find additional tables
and columns to join onto the original table to improve the prediction
accuracy of the target column. However, Kitana requires clean tables
to join onto the original query table. Therefore given a larger corpus
of uncleaned tables, one challenge is how to decide which tables to
clean and pass to Kitana to increase the prediction accuracy of the
underlying target column. A traditional approach might include using
word embeddings to find similar tables to the target table / column
however this method 1) might not be able to grasp the true semantic
meaning of a table, 2) does not take advantage of the Kitana’s query
history, and 3) is not sophisticated enough to find important columns
that are only accessible through multi-joins. In this paper, we propose
and test different agentic system to address these limitations. First, we
propose agents to find single tables that are most likely to improve the
accuracy of the initial target column given Kitana’s search history
(denoted No-hop case). We find that our system is able to find single
tables that increase the R2 of the original target column by 24% and
achieve a 12.5% higher R2 more than the naive embedding approach.
Second, we propose an agent capable of identify a sequential list of
join operations to join tables on the target query that would not have
been accessible through a single join (multi-hop case). We compare
various exploration strategies for finding these joins in a cost effective
way.

1.1 One Sentence Summary
We propose agentic systems to find tables and columns that improve
the accuracy of machine learning (ML) prediction problems.

1.2 Use Case, Audience, and Needs
This paper is primarily for data scientists, ML engineers, and re-
searchers who use ML models to predict target variables. Data is
the main resource powering these models, and finding the right
data is key to accurately explaining a target variable. However,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2025 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

with ever growing datalakes, it is becoming more and more difficult
to find the right data to power these models. This paper details
agentic systems to help ML users find data relevant to their queries.
Without this ability, these individuals and their institutions would
suffer from sub-optimal results and a loss of productivity.

2 RELATEDWORK
At its core, the problem we are trying to solve is a tabular search
problem: finding the best table for a given query. Below, we provide
an overview of how other papers have explored similar problems.

2.1 Finding Related Tables:
Earlier solutions have looked to use word embeddings ([1], [14],
[12]) on a table’s schema or other natural language present in the
table to find similar tables. Certain Text2SQL papers ([3]) also use
this method. However, methods that look to use word embedding
methods struggle to provide the proper contextual information
for numeric data. Further, these methods might ignores row infor-
mation (particularly when they just embed the schema), which is
essential to understanding the true context of a table. Consequently,
other works have explored searching for specific columns or rows
related to the underlying query ([2], [10]). These methods either
result in encoding an entire row, which could become expensive
depending on the table size, or limiting the search to a few cells
in a table. The latter method is helping for answering a specific
query, however for finding tables with entire columns to augment
a query, this method might be too narrow. Furthermore, all of these
methods look to find tables based on some form of similarity. While
that might work for Text2SQL or question answering, a column
that is similar to the target column or underlying query table does
not guarantee that it will have increased predictive accuracy. While
the paper pulls uses prior tabular search methods, the main differ-
entiating factor is using the Kitana augmentation history to aid the
search for which tables to add to the cleaned database.

2.2 Finding Join-able Tables:
Finding join-able tables in data lakes is another crucial aspect of
tabular search that presents unique challenges. Zhu’s work [15]
on search and join algorithms for tables in data lakes highlights
the complexity of identifying meaningful join candidates among
vast collections of heterogeneous tables, particularly when join
conditions are not explicitly defined. Traditional approaches for
finding join-able tables often rely on syntactic matching of col-
umn values or metadata similarity, which can miss semantically
valid join opportunities. DeepJoin [4] addresses these limitations by
leveraging pre-trained language models to capture deeper semantic
relationships between tables, enabling the discovery of non-trivial
join candidates that conventional methods might overlook. These

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Mateo, Nicky, Kaushal

approaches demonstrate significant improvements over schema-
matching techniques; however, they primarily focus on finding
tables that can be joined rather than tables that will improve pre-
dictive performance once joined. This distinction is crucial, as join-
ability does not necessarily correlate with usefulness for prediction
tasks. Furthermore, most existing join discovery methods are opti-
mized for single-hop scenarios and struggle with the complex path
planning required for multi-hop join sequences, where intermedi-
ate tables must be identified and joined in a specific order to reach
the most valuable augmentation tables.

3 PROBLEM, CAUSE, AND INSIGHT
3.1 Problem Definition
At a high level, the problem can be seen as a data table search
problem, where a user wants to find a table that is most likely to
help predict a target column in another table. More formally, given
a query qi, which is composed of a table and a target column, our
goal is to find a subset of tables T’ from a corpus of tables T to clean
and include in the database that Kitana searches. For each qi, we
have a set of gi of past tables that Kitana found to augment the
accuracy of qi, along with the corresponding increase (or decrease)
of the R2 value, denoted as ai. We denote the budget to search for
the table as bi.

3.2 Cause
Ever-growing data lakes filled with messy data create the need
to 1) search through a data lake to find tables related to a user’s
underlying query and 2) clean tables once found. However, both of
these tasks are non-trivial. For searching through tables, a RAG ap-
proach could be used; however, this approach can suffer either from
improper or missing contextualization of the table [6] or incur high
costs if the entire table is embedded [2]. Further, while a baseline
embedding may find contextually similar tables, they can fall short
when identifying join-able tables. Similarly, an embedding method
cannot identify multiple tables that must be joined together first,
before joining onto the query table. We denote this phenomenon
as the multi-hop case.

Even after the tables are located, further challenges remain in
structuring them in the correct format to join onto the main query
table. Several papers, including Cocoon [7] and Jellyfish [13], have
been proposed to use LLM’s to process and clean data. While likely
superior to manually cleaning a dataset, these methods still incur
high costs and have a limit on how many tables can be cleaned and
processed at a time.

3.3 Insight
We believe that an agentic table search system can help overcome
these problems. Our first insight is that LLMs excel at extracting
and inferring nuanced semantic meaning from tables ([7] [5]). This
nuanced semantic meaning can help differentiate which tables can
provide value to a query from those that cannot. For example, sup-
pose that two housing datasets can join onto a Kitana query for
a table called Sydney_housing.csv. One is called melb_housing.csv,
while the other is called hou_housing.csv. While a simple word em-
bedding model might rank the two potential tables as equally likely
to enhance the query, an LLM might discern that melb_housing.csv

could include data from Melbourne, which might be more helpful
than housing data from Houston. Further context from the table,
such as addresses or longitude and latitude coordinates, could pro-
vide additional insights that an embedding model could not discern.
Several papers ([7] [13]) have explored this topic.

Our second key insight is that while semantic similarity is a
good starting point to find tables that could enhance a query, there
is no guarantee that semantically similar tables could improve
the accuracy of the underlying table. In fact, in some cases, more
orthogonal tables or column names could enhance the query more.
For example, if you are looking to predict flight delays, weather,
although not the most semantically similar word to flight, might be
a strong predictor. Instead, having a source of truth could enhance
the query more. The Kitana query history can provide this source
of truth and act as guidance for which tables/columns can help
improve the query the most. Additionally, given budget constraints,
this past query history can dictate where to look. For example,
if we have previously tested augmenting a housing price dataset
with local school quality, cleaning further datasets related to school
quality might not be the best use of the budget.

Our final key insight is that these traditional approaches only
consider one table at a time. Consequently, situations where linking
multiple tables through intermediary join keys (e.g., table A is joined
with table B, and table C is subsequently joined with table B via
distinct attributes) would be missed or ignored even though they
might unlock more potential in augmenting a query. We denote this
case the multi-hop case. The primary difficulty of multi-hop lies
in accurately tracking column lineage and managing the evolving
schema across successive join operations to ensure the semantic
integrity and utility of the resultant query. Conventional approaches
relying solely on single-pass semantic similarity assessments are
often inadequate for resolving ambiguities and identifying optimal
join paths in these complex scenarios. Therefore, we believe that
an iterative, multi-turn methodology is required to find these multi-
hop scenarios and unlock columns that would not be accessible had
we used a traditional approach of comparing similar tables one at a
time.

This paper explores two settings. First, it explores the efficacy
of three different architectures - naive embedding, LLM Enrich,
and Agentic Selector - that look to use table semantics and prior
Kitana query histories to search for individual tables that are most
likely to increase the accuracy of a query. We denote this case as
the No-hop case. Second, this paper introduces a novel method
that leverages LLMs for proposing candidate join operations within
such multi-hop sequences. To represent the potential joins and
track data provenance, our approach employs a dynamic graph
structure that records the applied operations and potential table
integrations. Furthermore, we investigate and implement expansion
strategies designed to navigate the solution space of join sequences
efficiently, ensuring adherence to operational budget limitations
while maximizing the quality of the integrated data.

4 SOLUTION
4.1 Budget Considerations
Large-scale data lakes can contain hundreds or thousands of candi-
date tables, making it expensive to evaluate each one using LLM

Agentic Table Search for KitanaQueries Conference’17, July 2017, Washington, DC, USA

calls. Therefore, to ensure scalability and lower costs, we introduce
a query-specific budget constraint bi that limits the total number
of LLM tokens our agent can use during table selection. The aim is
to be more efficient than naively running Kitana across the entire
data lake while maintaining high-quality selections.

4.1.1 Greedy Budgeting. In the simplest implementation, we use a
greedy budgeting approach. The agent processes candidate tables
and tracks the cumulative number of tokens used. Once the total
exceeds the query budget bi, the process halts and the currently
selected tables are returned. This method is fast and easy to imple-
ment, but can be myopic: tables earlier in the list may be included
even if they are marginally useful or token-expensive.

4.1.2 Value-per-Token Budgeting. To improve selection efficiency
under budget constraints, we developed a more informed strategy
based on the concept of value per token. For each candidate table
Tj, we estimate its token cost cj by constructing the actual LLM
prompts that would be used for description or join-key analysis.
We also assign a value score vj based on similarity to the query or
historical effectiveness.

Given these estimates, we sort tables by their value-to-cost ratio
vj
cj and greedily select the top entries until the total cost reaches
bi. This heuristic approximates the knapsack problem and priori-
tizes high-yield, low-cost tables — for example, shorter tables with
relevant join keys and minimal metadata.

A key ingredient of the "Value-per-Token" budgeting is the
"value" function. In its simplest form the value of a table can be the
cosine similarity of the embedding. More complicated approaches
could include "distance" from good or bad tables in terms of cosine
similarity which we can access from the Kitana history. Due to time
constraints, we could only evaluate performance using the greedy
budgeting strategy.

4.2 No-hop: Embedding Approach
As a baseline, we developed a naive embedding approach. For any
given query, we embed the query’s table name and target column.
Similarly, we embed the table name along with its column names
for each table in the data lake. To decide which tables to clean and
add to the Kitana database, we select the top X tables similar to the
query table and column based on cosine similarity. Figure 1 details
the table selection process.

Figure 1: Baseline Embedding Architecture

4.3 No-hop: LLM Enrich
Our next approach is the "LLM Enrich method", which looks to
address some of the baseline embedding’s limitations. Our first
observation is that the embedding approach is unable to find tables
that are join-able with the target query. For example, the embedding
approach would prioritize a table with column names that are more
similar to the query column’s even though there are no columns
that could be joined onto the query table. Our second observation is
that the column value’s themselves provide important information
that embeddings cannot interpret well. Some examples include
data issues (such as missing values) and semantic meaning of the
columns, in particular when the column values are numeric. The
LLM Enrich approach attempts to overcome these limitations.

The baseline architecture is as follows, and can be seen in Figure
2. First, we use the embedding approach to find Y semantically
similar tables. Next, we prompt an LLM to 1) identify the potential
join keys in the table and 2) provide a brief description of what
the column represent. Finally, we ask the LLM whether or not the
table is join-able with the target table. We consequently filter out
any table that the LLM determines is not join-able with the query
table. For the remaining tables, we prompt the LLM to describe the
table given a few samples of the table. We embed these descriptions,
along with the description of the query table, and then select the
tables with the highest similarity to the query table based on cosine
similarity.

Figure 2: LLM Enrich Agent Framework

4.4 No-hop: Agentic Selector
While the LLM Enrich approach potentially excels in finding join-
able, semantically similar tables, one down side is the number of
LLM calls required. For one query, at most 4(Y + 1) (3 for the join
agent, 1 for the table description for each table plus the query table)
calls are required, which could become expensive. Further previous
works have shown that LLMs can be effective selectors or rankers
([10],[11]). Therefore, an LLM agent might be able to directly select
which tables are most likely to enhance the query. The LLM selector
framework is as follows and is depicted in figure 3. Similar to the
LLM enrich agent, we start off by selecting Y similar tables from
our data lake to the query table. Given these Y tables, we split them
up into K sets. For the first set, we prompt the LLM to select the top
X tables to enhance the target query given 1) the query table name
+ columns, 2) the prior tables that helped increase the accuracy the

Conference’17, July 2017, Washington, DC, USA Mateo, Nicky, Kaushal

most and least from the Kitana history and 3) the table’s names
and columns in the set. We append the tables outputted from the
prior set to the next set, and run the process again. At the end, the
system outputs X final tables to clean. One immediate benefit of
this framework versus the LLM Enrich method is the number of
LLM calls. At most, the agent will perform Y

K calls. We explore how
the choices of Y and K impact accuracy in section 5.3.

Figure 3: LLM Selector Agent Framework

Figure 4: Multi-Hop Agent Framework

4.5 Multi-Hop
The selector agent previously described focused on finding the
optimal tables for a single, direct query. However, its design does
not extend to effectively managing multi-hop join scenarios, which
involve sequential table linkages. Given that the Kitana system
requires the specification of join keys in conjunction with table se-
lection, a sophisticated framework is necessary to not only identify
relevant tables but also to propose viable join keys for constructing
these relational chains. The successful formation of such join chains
is contingent upon feedback from Kitana regarding the efficacy of
each join operation, thereby necessitating an iterative, multi-turn
approach. This iterative methodology is visually represented in
Figure 4.

The process commences with a search operation, informed by
the initial query and the current state of the evolving graph that

represents table integrations. This search can leverage any of the
methodologies detailed in prior sections. Following the identifica-
tion of candidate tables, an LLM is employed to propose potential
join keys. The table resulting from a proposed join is then submitted
to Kitana for validation of the merge’s success.

A significant consideration in constructing join chains is the in-
corporation of metadata and data samples frommultiple tables. This
can lead to a substantial increase in computational resource con-
sumption, potentially exhausting the allocated budget if metadata
from all entities in extensive potential join paths are considered.
To address this challenge, our strategy prioritizes the evaluation
of tables based on their individual characteristics, rather than for-
mulating subsequent search queries based on the full context of
already integrated tables within a chain. This targeted approach,
however, introduces the critical decision point of determining the
optimal order for node expansion within the search space.

To this end, we explore fundamental graph traversal algorithms,
such as Breadth-First Search (BFS) and Depth-First Search (DFS).
To enable a more informed search process, we integrate feedback
from Kitana, specifically leveraging the performance metrics of
completed join operations to guide subsequent decisions on which
nodes (tables or intermediate join results) to expand. This guided
expansion is informed by the heuristic that join paths which have
already contributed substantial information may exhibit diminish-
ing returns for further augmentation, thereby optimizing the search
within budgetary constraints.

5 EVALUATION
5.1 Evaluation Framework and Metrics
For our evaluation framework, we started by curating approxi-
mately 500 tables in our data lake. These tables represent uncleaned
tables that Kitana cannot access when searching for tables to aug-
ment the initial query. These tables were mostly pulled from Kaggle
and provide data largely on real estate, and country statistics (fo-
cused on economic, medical, environmental, political, and societal
data points).

For the No-hop case, we then create 17 test queries with target
columns including housing prices, cost of living indices, petroleum
consumption, and pollution rates. For each test case, we create
an initial starting database from which Kitana can pull from to
augment the original query. Figure 5 provides an overview of each
test case.

For each query, we will run Kitana on the initial database to get a
baseline R2 value. Then, we will run each of our methodologies on
the data lake, and select 5 tables to add within the selected budget
B. Afterwards, we will run Kitana again on the new dataset and
measure the R2 improvements. To find the upper bounded R2 value,
we will run Kitana on the full data lake. In some cases, certain
queries have a corresponding table that achieves a high R2 (≥ 0.98),
which will be used as the upper bound.

For our Multi-Hop agent, the evaluation does not focus on the
effectiveness of the table search component, as any of the afore-
mentioned search techniques can be employed to identify join can-
didates. Furthermore, the use of LLMs to propose join operations
has been previously established [9]. Consequently, our evaluation
for multi-hop scenarios centers on assessing the effectiveness of

Agentic Table Search for KitanaQueries Conference’17, July 2017, Washington, DC, USA

Figure 5: List of Test Queries

various chain expansion strategies under budgetary constraints. To
evaluate these techniques, we utilize synthetically generated join
chains. These chains are constructed using LLM calls to suggest
related items or entities. We then place correlated data at various
locations within these fabricated chains. The use of synthetic data is
justified in this context as it allows for controlled experimentation
to specifically test the efficacy of different expansion strategies,
particularly given the difficulty of finding real-world datasets with
readily verifiable, complex multi-hop join structures and known
optimal paths. Similar to the No-hop case, we evaluate the effi-
cacy of the agent based on achieved R2. For all test with either use
gpt-4o-mini or Gemini 1.5 Flash.

5.2 Results
5.2.1 No-hop results. Figure 6 showcases the results for the 17
No-hop tests. The average baseline R2 was 0.535 and the average
maximum R2 was 0.765. Overall, the base embedding approach
achieved an average R2 of 0.594, while the LLM Enrich and LLM
Selector agents improved on that score by around 10%-12%.

Surprisingly, increasing the budget onlymarginally improved the
R2 for the LLM Enrich and Agentic Selector methods. In some cases,
adding more budget decreased performance, suggesting that more
tables and exploration might decrease performance (potentially
because of the larger context / increase numbers of decisions the
LLM needs to make). We further explore this concept in section
5.3.2.

Figure 6: Average R2 from 17 No-hop test cases

5.2.2 Multi-hop results. Figures 7 and 8 illustrate the performance
of different expansion strategies under varying budgetary con-
straints, defined as a percentage of the total budget required to
complete all join chains.

Figure 7: R2 across expansion strategies with 50 % Budget
required to complete all chains

Figure 8: R2 across expansion strategies with 25 % Budget
required to complete all chains

The results indicate that the optimal expansion strategy is con-
tingent upon the available budget. Specifically, as shown in Figure
7, when the budget is set to 50% of the total required, Breadth-First
Search (BFS) exhibits superior performance, achieving a higher R2
value compared to Monte Carlo Tree Search (MCTS) and Depth-
First Search (DFS). This can be attributed to BFS’s methodology of
exploring tables in closer proximity to the initial query within the
join chain, which allows it to identify key tables when sufficient
resources are available for broader expansion.

Conversely, under a more constrained budget (25% of the total,
as depicted in Figure 8), the MCTS method surpasses both BFS and
DFS in terms of R2 accuracy. In this scenario, BFS’s effectiveness
is diminished as the limited budget restricts its ability to expand
adequately to locate critical tables. DFS, which prioritizes depth,
demonstrates greater performance variability, likely due to the
arbitrary placement of crucial information within any given chain;
its success is highly dependent on whether the deep exploration
path happens to uncover these valuable nodes early. MCTS, by
offering a more balanced approach between exploration breadth
and depth, proves to be the most robust strategy when operating
under stringent budgetary limitations.

Conference’17, July 2017, Washington, DC, USA Mateo, Nicky, Kaushal

Figure 9: Change in R2 from Removing Kitana History

5.3 Ablation Studies
5.3.1 KitanaQuery History. A main component of our theory is
that the Kitana search history provides further context for the LLM
to ground itself through in-context learning. To test this theory,
we run the Agentic Selector pipeline with and without the Kitana
history. We run the agent without budget constraints and select 5
tables to add for each query. Figure 9 show cases the results.

Overall, the R2 value of the target improves slightly (0.045) when
including the Kitana history. Drilling down more deeply, most
queries are not changed when removing the history, suggesting
that they were not utilizing the history. Further, in cases where
the R2 value was low to begin with, removing the Kitana history
slightly improved the R2 value (one case for popularity of the qual-
ity_of_life.csv dataset where the R2 improved from 0.15 to 0.23),
suggesting that when the prior query history did not improve the
target history, the Kitana query history may provide more noise
than signal, although further tests are needed given the small sam-
ple.

However, in a few cases (test case 4 and 16), the R2 value dropped
significantly, highlighting the importance of the query history to
potentially guide the LLM to select the best tables.

5.3.2 Set Size for Selector Agent. An important parameter for the
selector agent is the number of tables it evaluates at a time. The
more tables evaluated at the same time (and hence a smaller number
of sets), the higher potential chance that the LLM is not able to parse
out the correct table. On the other hand, too many sets will increase
the number of LLM calls and increase the chance of the LLM being
overwhelmed by the larger context, as shown in [8] (although [3]
challenges this claim). For the following test, we select 30 tables
from the embedding model for test case 15, and alter the window
size from 30 (1 set) to 6 (5 sets). We ask the LLM to select 5 final
tables and do not include budget constraints. Figure 10 showcases
the results

Unsurprisingly, the token cost increases as more sets. However,
the R2 value reaches its upper bound with only 2 sets, suggesting
more sets is helpful, but there are diminishing returns as the number
of sets increases. We performed a similar test but with 100 selected
tables from the embedding model, with the results summarized in
figure 11. We see similar results to the 30 initial table test, where
adding further sets experiences marginal gains (or in some cases
marginal losses). More interestingly, the overall average R2 is lower
when the selector agent starts with 100 tables vs 30, highlighting
the importance of filtering the initial set of tables given that it seems

Figure 10: R2 from Changing Set Size - 30 Initial Tables

that large contexts hurt the model’s performance (although this is
model dependent).

Figure 11: R2 from Changing Set Size - 100 Initial Tables

6 DISCUSSION AND CONCLUSION
In conclusion, we explored how agentic systems can help find tables
to enhance Kitana queries. We explored the no-hop case of finding
a single table at a time where we find that our agentic approach
using Kitana query histories increase performance vs the baseline
by 24% and improve on the baseline embedding approach by 13%.
Additionally we explored the multi-hop case, and demonstrate how
an agentic system can find a sequence of tables to join to enhance
a query that would have not have been possible with single table
joins in Kitana. We show that the agentic system can find tables that
enhance the original query with only exploring half or a quarter of
all the potential join paths.

Overall, we demonstrate the feasibility of using agentic systems
to find tables to improve Kitana queries. However, there are still
several directions this project could go as the selector agent was
still 12% below the upper bounded accuracy. These directions could
include 1) creating more sophisticated selector agents by training
a classification model based on prior Kitana histories, 2) creating
a more sophisticated agentic system that dynamically decides the
workflow structure depending on query needs (vs our fixed pipeline
structure) and 3) optimizing LLM calls further by calling smaller,
fine tuned agents or by optimizing prompts by using packages such
as DSPy.

REFERENCES
[1] R. Castro Fernandez, E. Mansour, A. A. Qahtan, A. Elmagarmid, I. Ilyas, S. Madden,

M. Ouzzani, M. Stonebraker, and N. Tang. Seeping semantics: Linking datasets
using word embeddings for data discovery. In 2018 IEEE 34th International
Conference on Data Engineering (ICDE), pages 989–1000, 2018.

Agentic Table Search for KitanaQueries Conference’17, July 2017, Washington, DC, USA

[2] S.-A. Chen, L. Miculicich, J. M. Eisenschlos, Z. Wang, Z. Wang, Y. Chen, Y. Fujii,
H.-T. Lin, C.-Y. Lee, and T. Pfister. Tablerag: Million-token table understanding
with language models, 2024.

[3] Y. Chung, G. T. Kakkar, Y. Gan, B. Milne, and F. Ozcan. Is long context all you
need? leveraging llm’s extended context for nl2sql, 2025.

[4] Y. Dong, C. Xiao, T. Nozawa, M. Enomoto, and M. Oyamada. Deepjoin: Joinable
table discovery with pre-trained languagemodels. arXiv preprint arXiv:2212.07588,
2022.

[5] X. Fang, W. Xu, F. A. Tan, J. Zhang, Z. Hu, Y. Qi, S. Nickleach, D. Socolinsky,
S. Sengamedu, and C. Faloutsos. Large language models(llms) on tabular data:
Prediction, generation, and understanding – a survey, 2024.

[6] Y. Gorishniy, I. Rubachev, and A. Babenko. On embeddings for numerical features
in tabular deep learning, 2023.

[7] Z. Huang and E. Wu. Cocoon: Semantic table profiling using large language
models, 2024.

[8] N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang.
Lost in the middle: How language models use long contexts, 2023.

[9] L. Patel, S. Jha, C. Guestrin, and M. Zaharia. Lotus: Enabling semantic queries
with llms over tables of unstructured and structured data. arXiv preprint
arXiv:2407.11418, 2024.

[10] M. Pourreza, H. Li, R. Sun, Y. Chung, S. Talaei, G. T. Kakkar, Y. Gan, A. Saberi,
F. Ozcan, and S. O. Arik. Chase-sql: Multi-path reasoning and preference opti-
mized candidate selection in text-to-sql, 2024.

[11] Z. Qin, R. Jagerman, K. Hui, H. Zhuang, J. Wu, L. Yan, J. Shen, T. Liu, J. Liu,
D. Metzler, X. Wang, and M. Bendersky. Large language models are effective text
rankers with pairwise ranking prompting, 2024.

[12] P. Yin, G. Neubig, W. tau Yih, and S. Riedel. Tabert: Pretraining for joint under-
standing of textual and tabular data, 2020.

[13] H. Zhang, Y. Dong, C. Xiao, and M. Oyamada. Jellyfish: A large language model
for data preprocessing, 2024.

[14] Z. Zhao and R. Castro Fernandez. Leva: Boosting machine learning performance
with relational embedding data augmentation. In Proceedings of the 2022 Interna-
tional Conference on Management of Data, SIGMOD ’22, page 1504–1517, New
York, NY, USA, 2022. Association for Computing Machinery.

[15] E. Zhu. Search and Join Algorithms for Tables in Data Lakes. University of Toronto
(Canada), 2019.

Conference’17, July 2017, Washington, DC, USA Mateo, Nicky, Kaushal

APPENDIX
A.1 Additional Figures and Results
Each figure in this appendix complements the findings discussed in the main text.
• Figure 12 shows how the LLM Enrich Agent performs across the different test cases and budget constraints.
• Figure 13 shows how the Selector Agent performs across the different test cases and budget constraints.

Figure 12: LLM Enrich Agent Full Results

Figure 13: Selector Agent Full Results

	1 Abstract / Introduction
	1.1 One Sentence Summary
	1.2 Use Case, Audience, and Needs

	2 Related Work
	2.1 Finding Related Tables:
	2.2 Finding Join-able Tables:

	3 Problem, Cause, and Insight
	3.1 Problem Definition
	3.2 Cause
	3.3 Insight

	4 Solution
	4.1 Budget Considerations
	4.2 No-hop: Embedding Approach
	4.3 No-hop: LLM Enrich
	4.4 No-hop: Agentic Selector
	4.5 Multi-Hop

	5 Evaluation
	5.1 Evaluation Framework and Metrics
	5.2 Results
	5.3 Ablation Studies

	6 Discussion and Conclusion
	References
	Appendix

