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ABSTRACT
This paper investigates the dynamics of ideological polarization
within societies using game theoretic principles and agent-based
simulations. We focus on modelling scenarios where individuals
maintain steadfast beliefs while adapting their tolerance toward
others. Through simulations, we explore the convergence of agent
strategies and analyze the influence of varying parameters, such
as simulation length and the initial strategies of the agents, on
the emergence of cooperative behaviors. Our findings reveal that,
despite societal polarization, a significant portion of agents tend to
converge on high-tolerance strategies, especially when starting bi-
ases are not overwhelmingly skewed towards low tolerance. These
results suggest that, even in polarized environments, a propen-
sity exists towards cooperative engagement and inclusive dialogue
when appropriately incentivized, highlighting the potential for fos-
tering constructive interactions within diverse societies.
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1 INTRODUCTION
In recent years, democratic societies, including countries such
as the United States and Canada, have experienced a concerning
trend towards ideological polarization. This phenomenon is marked
by a growing number of individuals who perceive societal divi-
sions through a binary lens, categorizing others as either ’with’
or ’against’ their ideological beliefs, with little room for nuanced
discourse or compromise. Consequently, the fabric of civil discourse
becomes increasingly strained, and the prevalence of productive
conversations on pressing societal issues diminishes.

As people’s views on the world become more intertwined with
their self-identification, they are less likely to change their opinions,
as that would mean they, as a person, were previously mistaken.
However, people with different views can still have productive con-
versations and tolerate people who oppose them. For example, many
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people of different religious backgrounds can hold diametrically
opposing views yet still be friends.

To this end, this paper aims to develop a model to simulate what
might lead people to become more tolerant of others over time. By
simulating agent interactions where individuals maintain steadfast
beliefs while having the flexibility to adjust their tolerance levels,
our model mirrors real-world scenarios where ideological convic-
tions remain static and attitudes towards cooperation and dialogue
can evolve. This nuanced representation enables us to explore how
changes in various parameters, discussed in section 3.2, impact
the likelihood of constructive engagement and the emergence of
cooperative strategies within polarized societies.

To accomplish this task, this paper leverages principles from the
field of game theory to simulate agent interactions. Specifically, we
leverage game theory to develop a simulation-based approach for
investigating the dynamics of agent interactions within polarized
societies. Agents in the simulation are self-interested, a core idea
in game theoretic models, looking to maximize their utility as they
interact with others. The agents will learn from their interactions to
update their strategy. After enough simulation time has passed, we
will investigate if there is any convergence on an optimal strategy
to learn what might lead agents to prefer having a high tolerance
towards other agents’ beliefs. By modelling societal interactions as
strategic games and exploring strategies for fostering productive
dialogue, our research aims to contribute to the broader discourse
on mitigating ideological polarization and promoting inclusive,
participatory democracies.

The rest of this paper is structured as follows. Section 2 presents
related works in this area. Section 3 describes the game theory
model used in the simulation and the simulation environment. In
section 4, we discuss our simulation findings. Section 5 has our
concluding thoughts.

2 RELATEDWORKS
Several studies have explored polarization dynamics in various
contexts. However, most of them develop models and simulations
where agents update their opinions instead of keeping them stag-
nant. Macy et al. [1] constructed an environment where agents
possess modifiable opinion vectors that update based on interac-
tionswith others. Their study, focusing on polarization in an n-party
system (simplified to two parties for simulations), examines how
polarization spreads and at what threshold parties become too po-
larized to collaborate on resolving an exogenous event they initially
agreed upon. They evaluated the impact of parameters such as the
influence and timing of shocks on agent polarization. Notably, this
work does not incorporate agent utility or decision-making, with
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agents updating opinions solely based on a predefined formula after
each interaction.

Some works, like Rychwalska and Roszczyńska-Kurasińska in
[2], investigate the causes leading to opinion polarization using
agent-based models, highlighting the role of social media as a signif-
icant contributor. Others, such as Schweitzer, Grivachy, and Garcia
in [3], develop agent-based models to examine how emotions influ-
ence the polarization of opinions.

A common theme among most works utilizing agent-based mod-
els to investigate polarization is their emphasis on causes or dy-
namics under the assumption that opinions will change. While this
assumption holds true in many scenarios, our goal is to model a
scenario where people’s beliefs remain constant while their outlook
towards others can change. We contend that such scenarios are
increasingly prevalent in society, where polarization has evolved
from a possibility to an established reality. Moreover, some existing
works do not incorporate a game-theoretic approach. Therefore, we
present a novel perspective on polarization dynamics by integrat-
ing game theory principles, offering unique insights into societal
polarization dynamics.

3 METHODOLOGY
3.1 The Model
This project aims to simulate societal interactions in which agents
maintain fixed beliefs while adapting their strategies to maximize
utility. Each agent’s strategy determines their interaction tolerance
level, influencing their utility. The model and simulation frame-
work are elaborated upon in the subsequent subsections. For this
simulation, 1000 agents were utilized.

3.1.1 Opinion Generation. Agent opinions were generated using a
bimodal distribution centred around 0. Opinions close to 0 represent
a centrist perspective, and opinions with large absolute values
represent the extreme perspectives.

Figure 1: Distribution of agent opinions

Figure 1 shows the distribution of agent opinions used in the
simulations. The distribution of agent opinions was kept consistent

across all simulation runs, mitigating the potential bias from varia-
tions in opinion values and counts. The mean of each distribution
is 𝜇 = ± 0.6, with a standard deviation 𝜎 = 0.25. The range of values
for the opinions is [−1.5, 1.5], the bounds of which each denotes
either extreme. The total number of opinions generated was 1000;
one opinion per agent.

In this model, agent opinions remain static. This choice reflects
real-world scenarios involving polarizing topics, such as religion
and politics, where opinions tend to resist change while tolerance
levels may evolve.

3.1.2 Strategies. The set of actions available to each agent is 𝐴 =

{1, 2, 3}, where each 𝑎 ∈ 𝐴 corresponds to a tolerance level. Toler-
ance represents an agent’s willingness to engage in constructive
dialogue. It can also be thought of as the amount of effort an agent
is willing to put into having a productive conversation. A tolerance
of 1 corresponds to low tolerance (i.e. a low willingness to put
effort into a conversation), whereas a tolerance of 3 reflects a high
willingness to invest effort.

Agents employ a mixed strategy according to the weights of
each action, discussed in section 3.1.4.

3.1.3 Utility Function. The utility function for each agent is defined
as:

𝑢𝑖 (𝑎) =softplus
(
max(𝑎𝑖 , 𝑎−𝑖 ) − 𝑑

)
×
(𝑎𝑖 + 𝑎−𝑖

𝑑
· reward − cost · 𝑎𝑖 · 𝑑

) (1)

Equation 1 was used for multiple reasons. First, it incorporates
softplus acts to dampen utility when no discussion takes occurs,
reflecting situations where agents fail to collaborate due to large
opinion disparities. The softplus function is defined by

softplus(𝑥) = log(1 + 𝑒𝑥 )
This is determined by looking at the difference between the agent
with the higher tolerance chosen (max(𝑎𝑖 , 𝑎−𝑖 )) and the distance
(𝑑) between the two agents opinions (interactions will be discussed
more in section 3.1.4). If the distance is too large, the agents will be
unable to collaborate, resulting in decreased utility.

The utility function’s second component factors in reward and
cost terms, modulated by agent effort and opinion distance to cap-
ture interaction dynamics. The variables 𝑟𝑒𝑤𝑎𝑟𝑑 and 𝑐𝑜𝑠𝑡 in equa-
tion 1 are both kept constant at 1. The reward is proportional to the
sum of the efforts of each agent, 𝑎𝑖 +𝑎−𝑖 , and inversely proportional
to the distance,𝑑 . However, the cost is proportional to both agent 𝑖’s
effort 𝑎𝑖 and the distance. When two people meet, their combined
effort will result in a higher reward, while being further from the
other will result in a lower reward. But when looking at the cost,
the more effort an agent puts in, the higher their cost, on top of a
higher cost for having a higher distance.

Notably, the utility function avoids strict dominance of high
tolerance strategies. Otherwise, there would be an obvious choice
that should rapidly converge for the agent: always choose High
tolerance (i.e. 𝑎𝑖 = 3 with probability 1). This property makes the in-
teractions and chosen strategy more interesting for analysis, while
keeping the the utility function similar to a real world scenario:
putting in too much work can cost you more in certain interactions.

For example, take two agents, 𝐴1 and 𝐴2, whose opinions have
a distance of 1. When 𝐴1 and 𝐴2 both choose 𝑎 = 1, 𝑢1 = 0.69,
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and if 𝐴2 chose a tolerance of 𝑎1 = 2, while 𝐴2 keeps 𝑎2 = 1, 𝑢1
would increase to 1.31. However, is the distance was 2, when 𝑎 = 1,
𝑢1 = −0.31, and when 𝑎1 = 2 and 𝑎2 = 1, 𝑢1 would decrease to
-1.73.

3.1.4 Learning. No-regret learningwas employed to facilitate agents
updating their strategy. No-regret learning models look at the out-
come of each possible action for each interaction and update the
probabilities of choosing each action based on how they would
have performed in that interaction. The specific algorithm chosen
to implement no-regret learning was the multiplicative weights
(MW) algorithm.

The MW algorithm was chosen for the following properties:
• MW can handle 𝑁 distinct actions.
• MW can handle arbitrary and continuous costs/loss in [0, 1].

The general structure of the MW algorithm, described in [4], is as
follows,:

(1) In round 1, ...,𝑇 , the algorithm choose some expert 𝑖𝑡
(2) Each expert 𝑖 experiences loss 𝑙𝑡

𝑖
∈ [0, 1]

(3) Algorithm experiences the loss of the expert it chooses 𝑙𝑡
𝐴
=

𝑙𝑡
𝑖𝑡

(4) Total loss of expert 𝑖 is 𝐿𝑇
𝑖
=
∑𝑇
𝑡=1 𝑙

𝑡
𝑖

(5) Total loss of the algorithm is 𝐿𝑇
𝐴
=
∑𝑇
𝑡=1 𝑙

𝑡
𝐴

The above structure allows the loss of each agent to be stored
for later analysis. The pseudo-code of the basic MW algorithm,
described in [4], is:

Algorithm 1MW Algorithm

Set weights𝑤𝑡
𝑖
to 1 for all actions 𝑖

for 𝑡 = 1 to 𝑇 do
Let𝑊 𝑡 =

∑𝑁
𝑖=1𝑤

𝑡
𝑖

Choose action 𝑖 with probability𝑤𝑡
𝑖
/𝑊𝑇

For each 𝑖 , set𝑤𝑡+1
𝑖
← 𝑤𝑡

𝑖
· exp(−𝜖𝑙𝑡

𝑖
)

end for

Note: The first step, where the weights are set, was not the same
for all simulations. This will be discussed further in section 3.2.3.

The loss is defined as

𝑙𝑡𝑖 = 1 − 𝑢 (𝑎𝑖 ) −𝑚𝑖𝑛(𝑢 (𝑎))
𝑚𝑎𝑥 (𝑢 (𝑎)) −𝑚𝑖𝑛(𝑢 (𝑎))

The loss must be normalized to a range of [0, 1] as described
above. Instead of directly using the normalized value, we subtract it
from 1. This was done when the fractional part was 1, which means
the agent’s chosen strategy yielded the maximum utility for that
interaction, which would result in a loss of 0. In this implementation,
𝜖 = 0.1.

3.2 Simulation
Given the model above, the simulation serves to analyze the impact
of varying parameters on agent strategy profiles, which are simply
the probability of each agent choosing each action.

The remainder of this section will outline the general simulation
and interaction structure and discuss the different parameters that
were changed for each simulation.

3.2.1 Simulation Structure. Each simulation involves a total of
𝑁 = 1000 agents and runs for 𝑇 time steps. In each time step,
agents sequentially interact with randomly chosen counterparts.
That is, agent 1 chooses a random agent to interact with, determines
its strategy based on its current weights, and the current weights
are stored for further analysis. Then, the utility is determined, and
weights are updated as described in the MW algorithm in section
3.1.4. Then Agents 2 through N then go through the same process.
The time step is concluded once each agent has experienced exactly
one interaction.

3.2.2 Number of Time Steps. The first parameter modified between
simulation runs was the length of the simulation. The goal of vary-
ing the simulation length is to observe trends in the convergence
of strategy profiles. Since the distance between agent 𝑖’s opinion
and the agent it chooses is part of the utility function in equation
1, there may be trends in converged strategy profiles based on the
agent’s opinion if the strategy profile converges.

3.2.3 Starting Strategy. The other parameter that changed between
simulations was the starting strategy profile of the agent. At first,
all agents started with all weights for each action set to 1, as de-
scribed in algorithm 1. This means each agent starts with equal
probabilities of choosing each tolerance. However, in society, not ev-
eryone has the same level of tolerance. More diverse initial strategy
profiles are explored to emulate real-world variance in tolerance
levels. Simulation runs commence with agents exhibiting varied
preferences for low, medium, or high tolerance. An example of this
is could be 80% starting with [4, 1, 1], 15% with [1, 4, 1], and 5%
starting with [1, 1, 4], a low, medium, or high preference of 66.7%,
respectively. As agents can start with different probabilities for
their initial strategies, this may influence what the optimal strategy
for any agent will be.

This parameter variation aims to identify thresholds wherein
optimal high-tolerance strategies prevail, considering fixed initial
opinions and potential opinion-strategy correlations. As mentioned
before, since distance is incorporated in the utility function in
equation 1, and agents starting opinion is fixed, agents with different
opinions may end with different optimal strategies.

4 EXPERIMENTAL RESULTS
4.1 Strategy Convergence With Equal

Probability Starting Strategies
This section investigates the convergence of agent strategy profiles
when startingwith equal probability strategies. The point of interest
is to see if a high tolerance strategy is preferred, given it is not a
strictly dominant strategy. The initial simulations ran with each
agent having no preference to any action, i.e. an equal probability
for each. The convergence of pure strategies can be seen in figure
2.

Figure 2 shows the number of agents that hold pure and mixed
strategies at each time step. The green line shows the number of
agents playing a pure strategy of high tolerance, blue medium, or-
ange low, and grey mixed. Figure 2 represents agents with opinions
greater than 0, which is why the total number of agents is 500. The
figure for agents with opinions less than 0 is the same.
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Figure 2: Number of agents preferring each strategy over
time

At the start all agents play a mixed strategy with equal weights,
shown by the grey line at 500 for 𝑡 = 0. However, as interactions un-
fold, a significant portion converges to pure strategies, particularly
towards high tolerance, as depicted by the green line in the fig-
ure. The number of agents playing a mixed strategy quickly drops
0, while the number of agents playing pure strategies of low or
high tolerance converges at around the same time, approximately
𝑡 = 272.

While all agents do not converge on a pure strategy of high
tolerance, approximately 84% do. Figure 3 provides some insight as
to why this is the case.

Figure 3: Average opinion of agents playing each strategy
over time

Figure 3 shows the average opinion values for the same strategies
from figure 2. As with the number of agents in figure 2, the lines
for each strategy converge. The average opinion for agents with a
pure strategy of low tolerance is around 0.91, and of high tolerance
is 0.56 (it is the negative of each when plotting the agents with
opinions below 0). Agents with more extreme opinions tend to
favour low-tolerance strategies, while thosewithmoderate opinions
lean towards high tolerance. This aligns with the utility function
in equation 1, where agents with extreme views experience lower
utility due to greater average distance from others, incentivizing
low tolerance. At a certain level, putting in more effort with a high
tolerance strategy does not yield a higher utility based on their
opinion.

4.2 Strategy Convergence With Biased Starting
Strategies

Next, we studied the system when agents were initialized with
imbalanced strategies. Figure 4 shows that even when 60% of the
agents started with an 80% bias towards playing low tolerance, the
majority of the agents in equilibrium played high tolerance. An
80% bias towards low tolerance means the starting weight vector
for those agents is [8, 1, 1], with the weights corresponding to low,
medium, and high tolerances, respectively.

Figure 4: Number of agents playing each strategy in equilib-
rium vs the biased starting state

The crossover point in figure 4, where the same proportion of
agents prefer a pure strategy of low and high tolerance, is around
68%. This means that when 68% of the agents start with an 80% bias
towards low tolerance, the simulation converges to an even split of
agents preferring low and high tolerance pure strategies.

We can also see that the average opinions of the agents playing
each strategy in equilibrium changed as we changed the starting
strategies in figure 5.

Figure 5: Average opinion of agents playing each strategy in
equilibrium vs the biased starting state

As illustrated in Figure 5, altering the starting strategies influ-
ences the average opinions of agents at equilibrium. Taking step
back, this is saying that for those agents playing a pure low strategy,
the average opinion does not need to be as extreme as more agents
start with a similar bias as you. For those playing a pure high strat-
egy, it shows that the average opinion will become more neutral,
as the agents whose opinions were at the bounds of where it made
sense to play a pure high strategy will slowly become attracted to
playing a pure low strategy.
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4.3 Agent Loss
Plotting the agent loss based on their learned strategies provides
some interesting insights. The goal was to examine the loss of the
strategies employed by agents, to see which benefited the most.

4.3.1 Equal Probability Starting Strategies. Figures 6 and 7 show-
case the average loss relative to agent opinions after 500 and 10000
iterations, respectively. The blue points are agents that converged
on a pure high strategy, the red on a pure low strategy.

Figure 6: Average agent loss and frequency relative to opinion
after 500 iterations

Figure 7: Average agent loss and frequency relative to opinion
after 10000 iterations

Both figures 6 and 7 show the same trend, with 7 being a smoother
representation as it was a longer simulation.

High tolerance agents experience increased loss with extreme
opinions, whereas low tolerance agents benefit from extreme views.
Interestingly, the loss of the low tolerance agents intersects with
the high tolerance agents around and opinion of ±1, where playing
low tolerance with an even more extreme opinion would result in
a lower average loss than playing high tolerance, whereas with a
less extreme opinion it would result in a higher average loss.

4.3.2 Biased Starting Strategies. When the starting strategies of the
agents are biased, there is a similar trend in the loss as above, but
with additional loss some cases. Figures 8 and 9 show the average
loss plots, but with 10% and 80% biased towards a low tolerance
strategy at the start, respectively.

Figure 8: Average agent loss and frequency relative to opinion
with 10% biased to low tolerance

Figure 9: Average agent loss and frequency relative to opinion
with 80% biased to low tolerance

When the 10% of the agents are biased towards a low tolerance
strategy as in figure 8, we see the same trend as in section 4.3.1:
high tolerance agents have increased loss at their opinions are more
extreme, low tolerance agents have a decreased loss. However, there
is a slight difference between the loss for the low tolerance agents
compared to an equal-weighted starting strategy as in section 4.3.1.
The peak average loss for low tolerance agents in this scenario
trends towards 1, as more agents with opinions closer to 0 end up
playing a pure low tolerance strategy. This is evenmore pronounced
in figure 9 where 80% of the agents start with a bias towards a low
tolerance strategy. This is not the same for agents that play a high
tolerance strategy in all scenarios, whose average loss reaches a
max of approximately 0.55 with opinions more extreme than ±1.

Figure 10 shows the average loss of agents playing low or high
pure strategies based on the proportion of agents that start with a
bias to low tolerance.

When looking at the average loss in figure 10, signified by the
solid blue a red lines with dots (low and high tolerance, respectively),
we can see a slight increase for agents playing a low tolerance
strategy as the percentage of agents who start with a bias towards
low tolerance increases. Conversely, there is a slight decrease in
the average loss across the axis for those playing a high tolerance
strategy. To understand why, we can look at the number of agents
that are playing each of these strategies, shown with the dashed



Conference’17, July 2017, Washington, DC, USA Eli Propp and Nicholas Khorasani

Figure 10: Average loss of low and high pure strategies vs the
percentage of agents initialized with a bias for low tolerance

lines with x’s with the same colour breakdown. Similar to what
we saw in section 4.2, specifically figures 4 and 5, as more agents
start biased to a low tolerance strategy, more converge on a pure
low tolerance strategy, which brought the average opinion of these
agents down. The same is true for the agents that converge on a
high tolerance strategy, but less agents end up playing this strategy,
and the average opinions of the ones that do are increasingly closer
to 0.

5 CONCLUSION
The results of these simulations provide some interesting insights
into the optimal tolerance strategies relative to agents’ opinions.
The first is that agents rarely, if ever, converged on playing a pure
medium tolerance strategy. It was always better to put in as much
effort as possible by playing a high tolerance or putting in a minimal
amount of effort by playing a low tolerance. On top of this, agents
rarely converged on a mixed strategy.

While we kept agent opinions static in these simulations to
simulate topics where people rarely change their opinions, it is
apparent that agents with the least extreme opinions and who
converged on a pure high-tolerance strategy had the lowest loss
and, therefore, performed the best.

When the starting weights were biased towards a low tolerance
strategy, we found that when less than 70% of the agents had this
low tolerance bias, a majority of the agents still converged on
playing a pure high tolerance strategy, as shown in Figure 10. That
is to say, even if over half of the agents start with a strong low
tolerance bias, a majority of the agents still prefer a high tolerance.
This is despite high tolerance not being a strictly dominant strategy,
as discussed in section 3.1.3. However, agents that start with a bias
towards low tolerance are more likely to end up converging on
a low tolerance strategy, highlighting the importance of starting
biases.

The results of these simulations give a promising outlook on
society. While no simulation will perfectly match the intricate nu-
ance of societal interactions, our simulation, which keeps opinions
static but allows agents to become more (or less) tolerant of others,
seems to capture the trend of polarization we see. In many scenar-
ios, except when a large majority of agents start with an extremely
low tolerance, most agents still prefer to be highly tolerant, even
with more extreme opinions.
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